Inhibition of human liver aldehyde oxidase: implications for potential drug-drug interactions.

نویسندگان

  • John T Barr
  • Jeffrey P Jones
چکیده

During the course of our research efforts to understand the kinetics of human aldehyde oxidase as a xenobiotic-clearing enzyme, we investigated the effect of eight different inhibitors on the oxidation of the probe substrate phthalazine. Saturation kinetic parameters for phthalazine oxidation in human liver cytosol were found to be the following: K(m) = 8.0 ± 0.4 μM and V(max) = 4.3 ± 0.1 nmol · min(-1) · mg protein(-1). Inhibitory potency of the inhibitors tested ranged from 0.1 to 5 μM. Of the eight different inhibitor compounds tested, seven were observed to inhibit through a mixed mode and one through a strictly competitive mode. A ratio of the K(ii) and K(is) values was used to assess the relative competitiveness of each inhibitor. For the mixed inhibitors, the mode of inhibition varied from mostly uncompetitive to predominantly competitive (K(ii)/K(is) values ranging from 0.1 to 15). The implications for potential drug-drug interactions and inhibition mechanism are discussed. We found two inhibitors, clozapine and chlorpromazine, that have a moderate predicted risk of drug-drug interactions based on the K(i) value relative to the inhibitor concentration in human plasma, having a calculated [I]/K(i) value of 0.4 and 0.8, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for substrate-dependent inhibition profiles for human liver aldehyde oxidase.

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2-dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in huma...

متن کامل

Potent inhibition of human liver aldehyde oxidase by raloxifene.

The selective estrogen receptor modulator, raloxifene, has been demonstrated as a potent uncompetitive inhibitor of human liver aldehyde oxidase-catalyzed oxidation of phthalazine, vanillin, and nicotine-Delta1'(5')-iminium ion, with K(i) values of 0.87 to 1.4 nM. Inhibition was not time-dependent. Raloxifene has also been shown to be a noncompetitive inhibitor of an aldehyde oxidase-catalyzed ...

متن کامل

Dmd048546 24..29

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human...

متن کامل

Dmd048546 24..29

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human...

متن کامل

Dmd048546 24..29

The goal of this study was to provide a reasonable assessment of how probe substrate selection may impact the results of in vitro aldehyde oxidase (AO) inhibition experiments. Here, we used a previously studied set of seven known AO inhibitors to probe the inhibition profile of a pharmacologically relevant substrate N-[(2dimethylamino)ethyl]acridine-4-carboxamide (DACA). DACA oxidation in human...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 39 12  شماره 

صفحات  -

تاریخ انتشار 2011